Report to:

AL-MASANE AL-KOBRA MINING COMPANY

PRELIMINARY GEOTECHNICAL REPORT ON THE AL-MASANE PROJECT

Document No. 0886900100-REP-R0001-00

Third Party Disclaimer

The content of this document is not intended for the use of, nor is it intended to be relied upon by any person, firm or corporation, other than the client and Wardrop Engineering Inc. Wardrop Engineering Inc. denies any liability whatsoever to other parties for damages or injury suffered by such third party arising from use of this document by them, without the express prior written authority of Wardrop Engineering Inc. and our client. This document is subject to further restrictions imposed by the contract between the client and Wardrop Engineering Inc. and these parties' permission must be sought regarding this document in all other circumstances.

Confidential

This document is for the confidential use of the addressee only. Any retention, reproduction, distribution or disclosure to parties other than the addressee is prohibited without the express written authorization of Wardrop Engineering Inc.

Report to:

AL-MASANE AL-KOBRA MINING COMPANY

PRELIMINARY GEOTECHNICAL REPORT ON THE AL-MASANE PROJECT

JUNE 2008

Prepared by		Date	June 12, 2008
	Barnard Foo., M.A.Sc., P.Eng.		
Reviewed by		Date	June 12, 2008
	Noris Del Bel Belluz, P.Geol.		
Authorized by		Date	June 12, 2008
	Noris Del Bel Belluz, P.Geol.		

WARDROP

Suite 800, 555 West Hastings Street, Vancouver, British Columbia V6B 1M1 Phone: 604-408-3788 Fax: 604-408-3722 E-mail: vancouver@wardrop.com

REVISION HISTORY

				Additional	
REV.	ISSUE DATE	PREPARED BY	REVIEWED BY	APPROVED BY	DESCRIPTION OF REVISION
NO		AND DATE	AND DATE	AND DATE	
00		Barnard Foo	Noris Del Bel	Noris Del Bel	Draft to Client
			Belluz	Belluz	

TABLE OF CONTENTS

1.0	INTRO	DUCTION	1-1
2.0	GEOTE	CHNICAL DATA COLLECTION	2-1
	2.1	GEOTECHNICAL CORE LOGGING	2-1
	2.2	UNDERGROUND GEOTECHNICAL MAPPING	2-3
3.0	ROCK	AASS CLASSIFICATION SYSTEM	3-1
4.0	INTER	PRETED GEOTECHNICAL CONDITIONS	4-1
	4.1	SUMMARY OF GEOTECHNICAL OBSERVATIONS	4-1
		4.1.1 BOREHOLE WS 19	4-1
		4.1.2 BOREHOLE WS 20	4-2
		4.1.3 BOREHOLE AM 06	4-3
		4.1.4 BOREHOLE AM 22	4-3 1_1
		4.1.6 BOREHOLE AM 129	
	42	PRELIMINARY GEOTECHNICAL DATA COLLECTION RESULTS	4-5
	112	4.2.1 ROCKMASS CLASSIFICATION CONCLUSIONS (UNDERGROUND MAPPING)	4-5
		4.2.2 ROCKMASS CLASSIFICATION CONCLUSIONS (BOREHOLES)	4-6
5.0	STOPE	DIMENSIONING	5-1
	5.1	THE MODIFIED STABILITY NUMBER, N	5-1
	5.2	STABILITY GRAPH ANALYSES	5-2
6.0	CROW	N PILLAR ASSESSMENT	6-1
	6.1	EMPIRICAL METHODS	6-1
		6.1.1 CARTER'S CROWN PILLAR STABILITY ANALYSIS	6-1
		6.1.2 CROWN PILLAR STABILITY ANALYSIS PARAMETERS (FOURTH HEADING)	6-3
		6.1.3 RESULTS: CARTER'S CROWN PILLAR STABILITY ANALYSIS	6-4
	6.2	HOEK AND BROWN EMPIRICAL PILLAR DESIGN	6-4
	6.2	0.2.1 RESULTS. HUER AND DROWN GROWN FILLAR DIVIENSION ANALYSIS	0-0
	0.3	6.3.1 CPILLAR ANALYSIS METHOD	6-6
7.0	BACKF	ILL REQUIREMENTS	7-1
8.0	OBSER	RVATION UNDERGROUND	8-1
	8.1	INTERSECTION REQUIRES CABLE BOLTING	8-1
	8.2	Portal	8-1
	8.3	PILLAR REQUIRES ENFORCEMENT	8-3

	8.4	GROUND WATER	.8-3
9.0	CONCI	USIONS AND RECOMMENDATIONS	9-1
	9.1	ROCKMASS INTERPRETATION	.9-1
	9.2	STOPE STABILITY ANALYSIS	.9-1
	9.3	CROWN PILLAR ANALYSIS	.9-2
	9.4	GROUND CONTROL	.9-2
	9.5	GROUND WATER	.9-2
	9.6	CLOSURE	.9-2

LIST OF TABLES

Table 2.1	Borehole Details	. 2-1
Table 2.2	Point Load Testing Samples	. 2-2
Table 3.1	Rockmass Quality Categories based on Q	. 3-1
Table 4.1	Simplified Rockmass Quality Categories Based on Q	. 4-1
Table 4.2	Hole ID 19 (Saadah)	. 4-2
Table 4.3	Hole ID 20 (Sadaah)	. 4-2
Table 4.4	Hole AM 06 (Sadaah)	. 4-3
Table 4.5	Hole AM 22 (Sadaah)	. 4-3
Table 4.6	Hole AM 80 (Houra)	. 4-4
Table 4.7	Hole AM 129 (North Houra)	. 4-5
Table 5.1	Stope Dimension and Stability Numbers (N')	. 5-2
Table 6.1	Average Stope Dimensions	. 6-1
Table 6.2	Crown Pillar Stability Design Parameters and Result	. 6-2
Table 6.3	Scaled Crown Pillar Span with Variable Span and Thickness	. 6-3
Table 6.4	Hoek and Brown Empirical Pillar Dimension Estimate Values	. 6-6
Table 6.5	Al Masane CPillar Analysis Results	. 6-7

LIST OF FIGURES

Figure 5-1	Al Masane Stability Graph Analysis	5-4
Figure 6-1	Crown Pillar Analysis	6-3
Figure 6-2	Hoek and Brown Pillar Dimension to Strength Estimate	6-6
Figure 6-3	Stability Analysis of Crown Pillar	6-8
Figure 8-1	Wedge Failure Close to Pump Station	
Figure 8-2	Mine Portal	
Figure 8-3	Pillar (Between Ramp and North-South Exploration Drift)	8-3
Figure 8-4	Ground Water Filtration	
	∇	

1.0 INTRODUCTION

Al Masane Al Kobra Mining Co. (Al Masane) requested a geotechnical assessment be performed for the Al Masane project during the site visit on April 04 to 08 2008. Barnard Foo and Christopher Moreton, from Wardrop Engineering Inc. (Wardrop) performed a site visit accompanied by Veikko Koskela and Mohammed Salem of Al Masane.

During the site visit, there was a discussion with Veikko Koskela on site regarding the geologic conditions of Al Masane followed by underground mapping of two exploration drifts and six geotechnical logging of boreholes. The criterion for selection of the six boreholes was based on the surrounding geology, rock type, and approximate location to the proposed crown pillar and orebody.

It was observed that during the selection of the boreholes, the location of the boreholes only accomplished two of the three criteria stated – surrounding geology and rock type as boreholes intercepting the proposed Saadah crown pillar location were available. Detailed geotechnical data collection was not performed during the site visit in April 2008 due to time restrictions.

During the exploration drilling on site, both geotechnical and geological logging of the core were not performed. Currently there is no database pertaining to the rockmass conditions, classification, quality and geological information other than drillers' daily logs.

The geotechnical logging of the six boreholes, performed during the site visit, is an initial attempt to evaluate the rockmass conditions. The information gathered is only sufficient to initiate a preliminary geotechnical assessment of the crown pillar geometry and stope dimensioning indicated in the proposed scope of work.

Detailed geotechnical data collection is required to determine the ground conditions at depth for ground support and mine design, or for detailed engineering design purposes.

This report summarizes the observations made during the initial geotechnical core logging, and recommendations for crown pillar geometry and future geotechnical data collection plan for the Al Masane Project.

2.0 GEOTECHNICAL DATA COLLECTION

2.1 GEOTECHNICAL CORE LOGGING

Table 2.1 lists the boreholes evaluated for rockmass classification and the boreholes column information.

Borehole	Northing	Fasting	Elevation	Collar Azimuth	Dip	Geoteo Log	chnical ging	Zone	
No.		g	(m)	(°)	(°)	From (m)	To (m)		
WS 19	4993.00	5022.00	1622.1*	270	-30	0.0	48.3	Saadah/Wadi Saadah	
WS 20	5055.00	5022.50	1625.4*	270	-30	0.0	100.1	Saadah/Wadi Saadah	
AM 06	4752.91	4895.12	1514.47	93	-2	0.0	47.5	Saadah	
AM 22	4995.92	4890.10	1517.05	75	-1	0.0	97.3	Saadah	
AM 80	3375.00	4768.86	1521.24	90	-50	27.4	109.0	South Houra	
AM 129	3734.15	4899.40	1520.80	270	44	0.0	74.4	North Houra	
Note:	Coordinates on Mine grid not true north.		*Corrected Elevation						

Table 2.1 Borehole Details

Wardrop personnel conducted geotechnical data collection from the six drill holes. This logging commenced approximately 20 m in the hanging and foot wall of the ore zone. Representative samples of the rock types have been taken for point load testing. The samples can either be tested at Wardrop in Canada or by Al Masane on site.

Table 2.2 lists information pertaining to the samples and the table will be populated with testing results when performed. The updated table will be forwarded to Al Masane in a brief memorandum.

Borehole No	Box No	From (m)	To (m)	Length	Pock Type	Core Dia		neter	P Load (kN)	le (50) (MP2)	LICS* (Mpa)
Dorenole No.	BOX NO.		10 (11)	(m)	NOCK Type	D1	D2	De		15 (50) (IVIF a)	000 (Mpa)
WS 19	2	15.07	15.25	0.18	Gossan						
WS 19	2	16.86	17	0.14	FV4						
WS 19	4	29.3	29.5	0.2	FV4						
WS 20	2	15.6	15.69	0.09	Gossan						
WS 20	2	16.64	16.79	0.15	Gossan						
WS 20	4	26.05	26.16	0.11	FV4						
WS 20	5	32.38	32.58	0.2	FV4						
WS 20	13	81.98	82.14	0.16	FV6						
WS 20	14	84.7	84.86	0.16	FV6						
AM 06	1	2.26	2.44	0.18	FV2						
AM 06	2	7.08	7.27	0.19	t/d						
AM 06	5	27.03	27.19	0.16	FV6						
AM 06	7	37.32	37.44	0.12	sh						
AM 06	8	43.54	43.7	0.16	FV2						
AM 22	2	15.8	16	0.2	FV3						
AM 22	15	82.61	82.91	0.3	FV4						
AM 22	20	110.02	110.34	0.32	FV2						
AM 80	10	60	60.33	0.33	FV1						
AM 80	16	95.78	95.85	0.07	t						
AM 80	16	95.85	95.91	0.06	t						
AM 80	16	95.91	96	0.09	t						
AM 80	16	96	96.1	0.1	t						
AM 80	16	94.53	94.68	0.15	t						
AM 129	1	8.16	8.29	0.13	FV6/ch						
AM 129	2	12.73	12.84	0.11	FV6/ch						
AM 129	4	23.7	23.88	0.18	FV6						
AM 129	12	73.42	73.65	0.23	FV4						
FV1	Rhyolite Porph	ıry	FV6	Bedded Fels	phatic Chert				Piston Area (m ²)		
FV2	Felsic Tuff and	I Crystal Tuff	ch	Chlorite					Rock Test PIL-7		
FV3	Laminated Ch	erty Rhyolite	sh	Black Shale					USC = (14+0.175*De)*ls(50) Hoek and Browr	1980
FV4	Micaceous Fel	sic Tuff	t	Talc		*UCS results will be presented in a brief memorandum once testing is complete					g is completed

 Table 2.2
 Point Load Testing Samples*

WARDROP

2.2 UNDERGROUND GEOTECHNICAL MAPPING

Two areas of geotechnical mapping were performed underground at:

- Saadah Zone Exploration drift striking east at 4935 N
- South Houra Zone Exploration drift striking west at 3375 N

The mapping was performed approximately 20 m before and after of the ore zones. Details on the geotechnical mapping data are presented in Appendix A.

A total of 46 data points were gathered from the Saadah Zone and 13 data points were gathered from the South Houra Zone due to the limited time on site to perform all the geotechnical work. The stereographic plot is presented in Appendix A.

Both the drifts mapped can be observed to be relatively massive and mostly govern by foliation especially for Saadah Zone.

More data points are required to provide better statistical analysis to yield structurally control joint sets governing opening stabilities which can be obtained by underground geotechnical mapping campaign.

3.0 ROCKMASS CLASSIFICATION SYSTEM

The geotechnical data collected were classified with the use of Tunnelling Quality Index (Q) proposed by Barton, 1974, to allow the determination of rock mass quality, support estimation by Grimstad & Barton, 1993 and stope dimensioning by Stability Graph Analysis. The Q classification parameters are based on the block size, shear strength, and active stress.

Barton's Q is defined as:

$$Q = \left(\frac{RQD}{Jn}\right) x \left(\frac{Jr}{Ja}\right) x \left(\frac{Jw}{SRF}\right)$$

Where:

RQD/Jn is the Block Size Jr/Ja is the Inter-block Strength Jw/SRF is the Active Stress

RQD is the Rock Quality Designation Jn is the Joint Set number Jr is the Joint Roughness number Ja is the Joint Alteration number Jw is the Joint Water Reduction Factor SRF is the Stress Reduction Factor.

The rockmass classification proposed by Barton to describe the rock conditions based on Q classification is defined in Table 3.1.

Rockmass Quality	Range of Q
Exceptionally Poor	>0.01
Extremely Poor	0.01 to 0.1
Very Poor	0.1 to 1
Poor	1 to 4
Fair	4 to 10
Good	10 to 40
Very Good	40 to 100
Extremely Good	100 to 400
Exceptionally Good	400 to 1000

Table 3.1 Rockmass Quality Categories based on Q

4.0 INTERPRETED GEOTECHNICAL CONDITIONS

4.1 SUMMARY OF GEOTECHNICAL OBSERVATIONS

A summary of the geotechnical logging of boreholes data is described in the following sections. For the purpose of initial geotechnical analysis at Al Masane, the Barton rockmass rating is simplified into six categories as indicated in Table 4.1. The factors for JW and SRF in the Tunnelling Quality Index for this investigation are set at 1.0, assuming that the joints have minor inflow of less than 5 L/min locally, or being dry within medium stress environments where joints are moderately clamped but not overly stressed.

Rockmass Quality	Range of Q
Very Poor	Less than 1
Poor	1 to 4
Fair	4 to 10
Good	10 to 40
Very Good	40 to 100
Extremely Good	Greater than 100

Table 4.1	Simplified Rockmass Qual	ity Categories Based on Q

4.1.1 BOREHOLE WS 19

This borehole is located and drilled from the surface into Wadi Saadah. Logging was performed on the initial 48.3 m to identify the rockmass for the crown pillar. The initial 13.8 m of the borehole is broken and the remainder of the hole can be classified as Good to Extremely Good rockmass (Table 4.2).

4.1.2 BOREHOLE WS 20

Borehole WS 20 is located and drilled from surface into Wadi Saadah location. Logging was performed on the initial 100.1 m to identify the rockmass for the crown pillar. The initial 11.6 m of the borehole is broken and the remaining of the hole can be classified as Good to Extremely Good rockmass (Table 4.3).

4.1.3 BOREHOLE AM 06

This horizontal hole is drilled into the Saadah zone from the exploration drift. Logging was performed to 47.7 m to identify the rockmass in the hanging wall, ore zone and footwall. The core can be classified as Good to Extremely Good rockmass (Table 4.4).

4.1.4 BOREHOLE AM 22

Borehole AM22 is a horizontal hole drilled into the Saadah zone from the exploration drift. Logging was performed to 97.3 m to identify the rockmass in the hanging wall, ore zone and footwall. The core can be classified as Very Good to Extremely Good rockmass. Talcy shear was encountered at 75.45 to 75.70 m (0.25 m thick) and 76.5 to 76.59 m (0.09 m) (Table 4.5).

4.1.5 BOREHOLE AM 80

This downward dip borehole is drilled in the South Houra zones. Logging was performed from 27.4 m to 109.0 m to identify the rockmass in the hanging wall, ore zone and footwall. The core can be classified as Very Good to Extremely Good rockmass with talc from 93.33 to 97.0 m (3.67 m thick) (Table 4.6).

4.1.6 BOREHOLE AM 129

This upward dip borehole is drilled in the North Houra zones. Logging was performed from 0.0 m to 74.4 m to identify the rockmass in the hanging wall, ore zone and footwall. The initial 6.1 m of the core is mechanically broken. The core can be classified as Good to Extremely Good rockmass with broken core at 18.6 to 19.00 m (0.4 m thick) (Table 4.7).

WARDROP

Table 4.2Hole ID 19 (Saadah)

DEPTH	FROM	Length (m)	Dip w.r.t Core Axis	RQD	Jn (L)	Jn(U)	Jr(L)	Jr(U)	Ja(L)	Ja(U)	Q' (L)	Q' (U)	Percentage	Rating For Q'(L)	Zone	Remarks
0.0	13.8	13.8	N/A										28.5%		FW	Overburden ??
13.8	16.1	2.36	38-40	25	2	2	3	3	2	2	19	19	4.9%	Good	FW	
16.1	17.8	1.7	38-40	50	2	2	3	3	2	2	38	38	3.5%	Good	FW	
17.8	23.8	5.99	38-40	50	2	2	3	3	2	2	38	38	12.4%	Good	FW	
23.8	31.0	7.2	N/A	74	2	2	3	3	0.75	1	111	148	14.9%	Extremely Good	ORE	Core Split 30-50 m
31.0	37.4	6.44	38-40	25	2	2	3	3	1	1	38	38	13.3%	Good	ORE	
37.4	48.3	10.9	N/A	75	1	1	4	4	1	1	300	300	22.5%	Extremely Good	ORE	

Table 4.3Hole ID 20 (Sadaah)

DEPTH	FROM	Length (m)	Dip w.r.t Core Axis	RQD	Jn (L)	Jn(U)	Jr(L)	Jr(U)	Ja(L)	Ja(U)	Q' (L)	Q' (U)	Percentage	Rating For Q'(L)	Zone	Remarks
0.0	11.6	11.6	48-50	50	2	3	3	4	2	2	25	50	11.6%	Good	FW	Broken, Overburden ??
11.6	18.6	7	45-50	25	2	2	3	4	2	2	19	25	7.0%	Good	FW	
18.6	24.9	6.3	45-50	45	2	2	2	3	0.75	1	45	90	6.3%	Very Good	FW	
24.9	30.6	5.69	55-60	95	1	2	3	4	0.75	1	143	507	5.7%	Extremely Good	FW	
30.6	36.3	5.67	45-50	75	2	2	2	3	0.75	1	75	150	5.7%	Very Good	ORE	Split 35.94-36.26 m
36.3	41.9	5.68	55	95	1	1	4	4	0.75	1	380	507	5.7%	Extremely Good	ORE	
41.9	47.2	5.23	55	95	1	1	4	4	0.75	1	380	507	5.2%	Extremely Good	ORE	Broken @ 41.94- 42.17 m & 42.41- 42.49 m
47.2	59.4	12.21		95	1	1	4	4	0.75	1	380	507	12.2%	Extremely Good	ORE	Core Split
59.4	77.2	17.82	45-50	95	1	1	4	4	0.75	1	380	507	17.8%	Extremely Good	ORE	Core Split
77.2	82.6	5.43	45-50	85	1	1	3	4	0.75	1	255	453	5.4%	Extremely Good	HW	Core Split till 78.45 m
82.6	100.1	17.44	48-52	95	1	2	2	3	0.75	1	95	380	17.4%	Very Good	HW	

WARDROP

Table 4.4Hole AM 06 (Sadaah)

DEPTH	FROM	Length (m)	Dip w.r.t Core Axis	RQD	Jn (L)	Jn(U)	Jr(L)	Jr(U)	Ja(L)	Ja(U)	Q' (L)	Q' (U)	Percentage	Rating For Q'(L)	Zone	Remarks
0.0	1.5	1.5		90	1	2	2	3	0.75	1	90	360	3.6%	Very Good	HW	
1.5	3.0	1.5	35	90	1	2	2	3	0.75	1	90	360	3.6%	Very Good	HW	
3.0	4.5	1.5	35	90	1	2	3	3	2	2	68	135	3.6%	Very Good	HW	
4.5	6.0	1.5		90	1	1	3	3	0.75	1	270	360	3.6%	Extremely Good	HW	
6.0	7.5	1.5		90	1	1	3	3	0.75	1	270	360	3.6%	Extremely Good	HW	
7.5	12.0	4.5		90	1	1	3	4	0.75	1	270	480	10.8%	Extremely Good	HW	
12.0	17.8	5.82		90	1	1	3	4	0.75	1	270	480	14.0%	Extremely Good	HW	
17.8	23.8	5.98												Poor	Ore	Core Split
23.8	29.2	5.4		90	1	1	2	3	0.75	1	180	360	13.0%	Extremely Good	FW	
29.2	30.4	1.24		90	1	1	2	3	0.75	1	180	360	3.0%	Extremely Good	FW	
30.4	41.1	10.65		90	1	1	2	3	0.75	1	180	360	25.7%	Extremely Good	FW	
41.1	47.5	6.41		90	1	1	2	3	0.75	1	180	360	15.4%	Extremely Good	FW	

Table 4.5Hole AM 22 (Sadaah)

DEPTH	FROM	Length (m)	Dip w.r.t Core Axis	RQD	Jn (L)	Jn(U)	Jr(L)	Jr(U)	Ja(L)	Ja(U)	Q' (L)	Q' (U)	Percentage	Rating For Q'(L)	Zone	Remarks
0.0	23.4	23.4	65-70	90	2	2	2	3	0.75	1	90	180	24.0%	Very Good	HW	
23.4	63.1	39.72	55-60	90	2	2	3	4	0.75	1	135	240	40.8%	Extremely Good	ORE	
63.1	97.3	34.27	65-70	95	2	2	3	4	0.75	1	143	253	35.2%	Extremely Good	FW	Shear (Talcy) @ 75.45-75.7 m & 76.5- 76.59 m

AI-Masane AI-Kobra Mining Company

Table 4.6Hole AM 80 (Houra)

DEPTH	FROM	Length (m)	Dip w.r.t Core Axis	RQD	Jn (L)	Jn(U)	Jr(L)	Jr(U)	Ja(L)	Ja(U)	Q' (L)	Q' (U)	Percentage	Rating For Q'(L)	Zone	Remarks
27.4	35.4	8.1	55-60	80	2	2	3	4	0.75	1	120	213	9.9%	Extremely Good	FW	
35.4	41.4	5.97	55-60	65	2	2	2	3	0.75	1	65	130	7.3%	Very Good	FW	
41.4	47.2	5.78	50-55	95	2	2	2	3	0.75	1	95	190	7.1%	Very Good	ORE	Split @ 41.4-43.47 m
47.2	53.1	5.93	55	90	1	1	4	4	0.75	1	360	480	7.3%	Extremely Good	ORE	
53.1	60.4	7.3	60	95	1	1	4	4	0.75	1	380	507	8.9%	Extremely Good	ORE	
60.4	66.5	6.11	50-58	95	1	2	2	3	0.75	1	95	380	7.5%	Very Good	ORE	
66.5	72.4	5.88	50-55	75	2	2	2	3	0.75	1	75	150	7.2%	Very Good	HW	
72.4	90.3	17.92	50-55	80	2	2	3	4	0.75	1	120	213	22.0%	Extremely Good	ORE	Split @ 74.12 m
90.3	109.0	18.66	65-70	80	2	2	2	3	0.75	1	80	160	22.9%	Very Good	HW	Talc 93.33- 97.0 m

Table 4.7

Hole AM 129 (North Houra)

DEPTH	FROM	Length (m)	Dip w.r.t Core Axis	RQD	Jn (L)	Jn(U)	Jr(L)	Jr(U)	Ja(L)	Ja(U)	Q' (L)	Q' (U)	Percentage	Rating For Q'(L)	Zone	Remarks
0.0	6.1	6.1														Mechanical Breaks
6.1	8.8	2.7	65-72	70	2	2	2	3	0.75	1	70	140	4.0%	Very Good	HW	
8.8	12.1	3.3	58-62	75	2	2	2	3	0.75	1	75	150	4.8%	Very Good	HW	
12.1	14.8	2.7	52-58	70	2	2	1.5	2	0.75	1	53	93	4.0%	Very Good	HW	
14.8	18.3	3.5	58-62	85	2	2	1.5	2	0.75	1	64	113	5.1%	Very Good	HW	
18.3	21.0	2.7	50-55	45	2	2	1.5	2	0.75	1	34	60	4.0%	Good	HW	Broken @ 18.6-19.00 m
21.0	33.5	12.5	55	55	2	2	1.5	2	0.75	1	41	73	18.3%	Very Good	HW	
33.5	39.3	5.8	68-72	90	2	2	3	4	0.75	1	135	240	8.5%	Extremely Good	ORE	Core Split
39.3	60.0	20.7	40-45	80	2	2	3	4	0.75	1	120	213	30.3%	Extremely Good	ORE	Core Split
60.0	74.4	14.4	38	85	2	2	1.5	2	0.75	1	64	113	21.1%	Very Good	FW	

4.2 PRELIMINARY GEOTECHNICAL DATA COLLECTION RESULTS

4.2.1 ROCKMASS CLASSIFICATION CONCLUSIONS (UNDERGROUND MAPPING)

Underground mapping indicated that the rockmass is massive with one joint set and a random set. Wedge failures underground were observed due to the opening dimension and joint set orientation. This does not seem to occur at all the drift intersections observed underground. Spot bolting and cable bolting is recommended to increase safety in drift intersections and underground openings as mining progresses.

4.2.2 ROCKMASS CLASSIFICATION CONCLUSIONS (BOREHOLES)

The rockmass logged for the six boreholes indicated that the rockmass is competent with rockmass classification ranging from Good to Extremely Good ground. The talc encountered in the core and from underground mapping is not subjected to shearing or deformation. Additional on-site geotechnical data collection through underground mapping during the development stage and core logging is required to ensure that the rock types and geotechnical domain are addressed.

The talc is likely weaker than the surrounding rockmass and will induce additional dilution during mining adjacent to this unit. The strength of talc will be determined once point load testing results are available.

5.0 STOPE DIMENSIONING

Open stope dimensioning can be empirically estimated with the use of the Stability Graph. The stability graph developed based on more than 350 case histories collected from Canadian mines by Potvin, 1988; Potvin and Milne, 1992; and Bawden, 1993; accounts for key factors influencing open stope design. These key factors includes information on rockmass strength and stresses surrounding the opening, the dominating joint structure with respect to the excavation surface, the influence of gravity on the stability of the excavation face and stope size.

The stability graph design procedure is based on the calculation of two factors, the Modified Stability Number (N') representing the ability of the rockmass to stand up under given conditions and the Shape Factor (S) or hydraulic ratio, which accounts for the stope size.

5.1 THE MODIFIED STABILITY NUMBER, N

The modified stability number, N' is based on the Barton's Tunnelling Index (Q) with alteration to the active stress factor (Jw/SRF) on Q. The conditions in most underground mining environment are relatively dry, thus the Jw factor is considered to be 1.0. The Stress Reduction Factor (SRF) is set to 1.0 for moderate stress environment where moderate clamping of the joints are expected, but not overly stressed.

This alteration yields the Modified Tunnelling Index (Q') where:

$$Q' = \left(\frac{RQD}{Jn}\right) x \left(\frac{Jr}{Ja}\right)$$

Therefore, the tunnelling quality index (Q) for this geotechnical investigation is equivalent to the modified tunnelling quality index (Q').

The modified stability number (N') consisted of:

 $\mathsf{N}' = \mathsf{Q}' \times \mathsf{A} \times \mathsf{B} \times \mathsf{C}$

Where:

Q' is the modified tunnelling quality index A is the rock stress factor

B is the joint orientation adjustment factor C is the gravity adjustment factor.

The shape factor or commonly known as the hydraulic radius, for the stope surface under consideration is computed as follows:

$$S = \frac{\text{Area (sq. m)}}{\text{Perimeter (m)}} = \frac{\text{w x h}}{2(\text{w} + \text{h})}$$

Where,

W is the width of stope in metres H is the height or length of stope in metres.

The method proposed by the stability graph is based on Canadian case histories. This provides preliminary guideline for open stope dimensioning. Modifications of its parameters are required to reflect the site conditions at Al Masane and as detailed geotechnical data is available. Back analysis on the stope performance is essential to alter the parameters to suit the underground conditions.

5.2 STABILITY GRAPH ANALYSES

Error! Reference source not found. shows the modified Stability numbers to empirically estimate stope dimension. The average dip of the Saadah ore body for longhole mining is reported to be at 75-85°.

An estimated "A" factor of 1.0 is for intact rock greater that the induced strength and where the hanging wall is at relaxation during mining.

The "B" factor accounts for the joint orientation with respect to the stope surface. Since limited information of the major joint set or the dominant set is not readily available other than the information from underground mapping, a value of 0.3 is assigned.

Since the hanging wall is steeply dipping at 75-85°, the gravity adjustment factor C for the stope will likely be induced by gravity. Thus, at 75-85° stope inclination the "C" factor will yield a value of 6.5 for the hanging wall and 2 for the back.

The rockmass tunnelling index is good to very good to extremely ground conditions for Q' ranging 175-180 for the wall and the A, B, and C factors remain constant, indicated in **Error! Not a valid bookmark self-reference.**

		Dimens	ion (m)		C	ג'	•	D	^	Stability N	Number, N'	Stone
	Strike	Width	Height	S	нพ	FW	A	D		HW	FW	Stope
			15	4.3	177	173	1.0	0.3	6.5	345.15	337.35	Stable
			20	5.0	177	173	1.0	0.3	6.5	345.15	337.35	
	20		25	5.6	177	173	1.0	0.3	6.5	345.15	337.35	
			30	6.0	177	173	1.0	0.3	6.5	345.15	337.35	
			35	6.4	177	173	1.0	0.3	6.5	345.15	337.35	
			15	4.7	177	173	1.0	0.3	6.5	345.15	337.35	Stable
			20	5.6	177	173	1.0	0.3	6.5	345.15	337.35	
	25		25	6.3	177	173	1.0	0.3	6.5	345.15	337.35	
			30	6.8	177	173	1.0	0.3	6.5	345.15	337.35	
s I			35	7.3	177	173	1.0	0.3	6.5	345.15	337.35	
Na			15	5.0	177	173	1.0	0.3	6.5	345.15	337.35	Stable
			20	6.0	177	173	1.0	0.3	6.5	345.15	337.35	
	30		25	6.8	177	173	1.0	0.3	6.5	345.15	337.35	
			30	7.5	177	173	1.0	0.3	6.5	345.15	337.35	
			35	8.1	177	173	1.0	0.3	6.5	345.15	337.35	
			15	4.7	177	173	1.0	0.3	6.5	345.15	337.35	Stable
			20	5.6	177	173	1.0	0.3	6.5	345.15	337.35	
	25		25	6.3	177	173	1.0	0.3	6.5	345.15	337.35	
			30	6.8	177	173	1.0	0.3	6.5	345.15	337.35	
			100	10.0	177	173	1.0	0.3	6.5	345.15	337.35	
		5		2.0	242		1.0	0.3	2	145.2		Stable
	00	10		3.3	242		1.0	0.3	2	145.2		
	20	15		4.3	242		1.0	0.3	2	145.2		
		20		5.0	242		1.0	0.3	2	145.2		
×		5		2.1	242		1.0	0.3	2	145.2		Stable
ac	05	10		3.6	242		1.0	0.3	2	145.2		
-	25	15		4.7	242		1.0	0.3	2	145.2		
Q		20		5.6	242		1.0	0.3	2	145.2		
Ř		5		2.1	242		1.0	0.3	2	145.2		Stable
		10		3.8	242		1.0	0.3	2	145.2		
	30	15		5.0	242		1.0	0.3	2	145.2		
		20		6.0	242		1.0	0.3	2	145.2		
					242		1.0	0.3	2	145.2		
×.	15	3	100	6.5	177	173	1.0	0.3	6.5	345.15	337.35	Stable
Narro Veir	20	3	100	8.3	177	173	1.0	0.3	6.5	345.15	337.35	

 Table 5.1
 Stope Dimension and Stability Numbers (N')

Figure 5.1 Masane Stability Graph Analysis

A stope with a strike length of 30 m x 30 m high yields a hanging wall shape factor or hydraulic radius of 7.5 and narrow vein stope with dimension of 15-20 m L by 100 m height at 8.3 hydraulic radius, indicate that the stope is stable under the rock mass condition estimated.

"The hanging wall rocks are talcose however, and are not likely to stand for long periods without some support" (Watts, Griffis and McOuat Limited, July 13, 1994). Watts, Griffis and McQuat also suggested residual pillars to be left during mining operations which limits the overall extraction to 80%.

The height of the stope is controlled by the contact regularity and hanging wall stability. Thus at the current stage the stope dimension is suggested not to exceed the maximum dimension until detail geotechnical data is available to support the rock mass quality.

6.0 CROWN PILLAR ASSESSMENT

The West Saadah ore body subcrops directly beneath Wadi Saadah based on WGM's report (July 1996). The mining method at Al Masane involves both longhole stoping, and Cut and Fill. The wider section of the ore body will be mined with longhole stoping and the thinner section will be mined either by Cut and Fill or Alimak stoping. Table 6.1 lists average ore widths to suggested mining methods for Al Masane.

Table off Attelage etepe Billenetere

Mining Methods*	Average Width (m)						
Alimak Mining	Less than 3						
Cut-and-fill	3-5						
Longhole Stoping	5-25						
Note: Suggested Mining Methods	. Requires additional costs analysis.						

Three approaches were made to determine crown pillar configuration:

- Empirical Approaches by Carter, and Hoek and Brown
- Numerical Modelling CPillar

6.1 Empirical Methods

6.1.1 CARTER'S CROWN PILLAR STABILITY ANALYSIS

The method proposed by Carter is being used for dimensioning of new crown pillars and assessing stability of abandoned mines' crown pillar.

The "scaled crown span" concept demonstrates the stability of the pillar depends on geometry for any given rock quality: Span, thickness and rockmass weight to be most critical.

The database covers more than 100 case records from the original 1989/1990 database of 200 case records which includes more than 42 documented failures.

The "Scaled Crown Span", C_s is defined as:

$$C_{s} = S \left[\frac{\rho}{t(1+S_{R})(1-0.4Cos(\phi))} \right]^{0.5}$$

Where:

- S = span of pillar (m)
- t = thickness of pillar (m)
- ρ = rockmass specific gravity (tonnes/m3)
- SR = (Crown pillar span, S/Crown pillar strike length, L)
- Ø = dip of ore body

The crown pillar stability analysis design parameters and results based on methodology proposed by Carter are presented below (Table 6.2 and **Error! Reference source not found.**).

Tabla 6 2	Crown Billor Stability	Docian Paramoto	re and Pocult
	Crown Final Stability	Design Faramete	and Result

Tunnelling Quality Index									
Description	Min	Max	Comments						
Modified Q'	173.00	177.00	Foot & Hangingwall Values						
Jw (Medium)	114.18	116.82	Jw = 0.66 (1-2.5 kgf/cm Water Pressure)						
Jw (Large)	86.50	88.50	Jw = 0.55 (2.5-10.0 kgf/cm Water Pressure)						
Design (Q)	80	110							
Note: Q' = Modified	Q, Jw = Jo	int Water R	eduction Factor						
			Crown Pillar Dimension						
Description	Min.	Max.	Units						
Span	3	25	m						
Thickness	10	25	m						
Strike		200	m (Estimated-WGM Geological Map 1515 L)						
Density		3.7	t/m ³						
Dip		75	0						
Note: Density and D	ip from WO	GM, July 13	9,1994						
		Cro	own Pillar Stability Analysis						
Description	Min.	Max.	Comments						
Scaled Span, C_S	1.21	15.14	Stable ($C_S < S_c$)						
Q (Critical)	0.10	34.58							
Critical Span, S _c	24.66	29.67	Critical Span Limit based on Design Q (The Span of the Pillar limit for widest scaled span value for Unsupported Ground in relation to Q is approximately 30 m for the Q of 34.58						

Table 6.3 lists the Scaled Crown Span, Cs, for variable crown pillar span and thickness.

Design Q (min.)	80	80	80	80	80	80	80	80	80	80
Span, S (m)	3.0	5.0	8.0	10.0	12.0	15.0	18.0	20.0	22.0	25.0
Thickness, T (m)	1.5	2.5	4.0	5.0	6.0	7.5	9.0	10.0	11.0	12.5
Cs @ S/T = 0.5	4.9	6.4	8.1	9.0	9.9	11.0	12.1	12.8	13.4	14.3
Thickness, T (m)	3.0	5.0	8.0	10.0	12.0	15.0	18.0	20.0	22.0	25.0
Cs @ S/T = 1.0	3.5	4.5	5.6	6.3	6.8	7.6	8.3	8.7	9.0	9.58
Thickness, T (m)	3.6	6.0	9.6	12.0	14.4	18.0	21.6	24.0	26.4	30.0
Cs @ S/T = 1.2	3.2	4.1	5.1	5.7	6.2	6.9	7.5	7.9	8.3	8.7
Thickness, T (m)	4.5	7.5	12.0	15.0	18.0	22.5	27.0	30.0	33.0	37.5
Cs @ S/T = 1.5	2.9	3.7	4.6	5.1	5.6	6.2	6.7	7.1	7.4	7.8
Thickness, T (m)	6.0	10.0	16.0	20.0	24.0	30.0	36.0	40.0	44.0	50.0
Cs @ S/T = 2.0	2.5	3.2	4.0	4.4	4.8	5.4	5.8	6.1	6.4	6.8

 Table 6.3
 Scaled Crown Pillar Span with Variable Span and Thickness

Figure 6.1 Crown Pillar Analysis

CROWN PILLAR STABILITY ANALYSIS PARAMETERS

Tunnelling Quality Index

The Joint Water Reduction factor for Tunnelling Quality Index parameter was included in the crown stability analysis. Thus, the Modified Tunnelling Quality (Q')

index quoted in the Stability Graph Analysis (Section 5.1) is multiplied by a factor of 0.5 and 0.66 yielding design values (Design Q) of 80-100. This is to account for groundwater (Joint Water Reduction Factor, Jw) and maintaining the Stress Reduction Factor (SRF) of 1.

Crown Pillar Dimension Parameter

The crown pillar is estimated to be 200 m strike length with span ranging from 3-25 m dipping at 75°.

RESULTS: CARTER'S CROWN PILLAR STABILITY ANALYSIS

The crown pillar is estimated to be stable for span (m)/thickness (m) ranging from 3:10 to 25:25 for Design Q values of 80-100. The ground conditions will have to deteriorate to a critical value of Q = 0.1 (Extremely Poor ground) for 3 m spans, and Q = 34.58 (Good ground) for 25 m spans, before a potentially unstable condition is reached. For smaller spans this level of deterioration does not appear likely. In larger spans than the span/thickness ratio prescribed, the level of deterioration is possible, and stabilization will be required.

For a crown pillar span of 25 m W by 25 m thick:

Crown pillar Scaled Span, $C_S = 15.14 < Critical Span, S_C = 29.67$; Stable

The crown pillar is considered stable.

The Critical Span of the pillar limit for widest stable scaled span value for unsupported ground in relation to Q is approximately 30 m.

During development or production blasting, the stopes have to be excavated allowing the crown pillar to have a gradual tapering thickness versus the span. The determination of crown pillar dimension proposed by Carter considers the rockmass quality, geometry and database on stable geometries and failures. This methodology does not incorporate factor of safety.

6.1.2 HOEK AND BROWN EMPIRICAL PILLAR DESIGN

The crown pillar dimension estimation proposed by Carter did not take into consideration pillar strength. To address this, Hoek and Brown relationship for pillar strength and pillar shape was used to examine the pillar dimension.

The pillar strength can be determined with Hoek and Brown Criterion:

$$\sigma_1 = \sigma_3 + \sqrt{m\sigma_c\sigma_3 + s\sigma_c^2}$$

Where

m and s are rockmass constant

 σ_{C} and σ_{3} are axial and confining effective principal stresses.

For pillar strength estimation, σ_3 is equated to 0, yielding only uniaxial confining stress conditions.

Based on an estimated uniaxial compressive strength (UCS) for Saadah of 150-200 MPa, the pillar strength is estimated at 63.2 MPa with Hoek and Brown Criterion for very good quality rockmass (Table 6.4). The estimation of rock strength for Saadah ore will be confirmed when test results are available from point load testing.

RESULTS: HOEK AND BROWN CROWN PILLAR DIMENSION ANALYSIS

Figure 6.2 relates the pillar strength as a function of the pillar dimension. The nomenclature for pillar dimension on Hoek and Brown pillar graph is:

• Pillar width is perpendicular to the direction of principal stress.

In this case the pillar width on the graph represents crown pillar thickness. For crown pillar strength over unaxial compressive strength (UCS) of 0.32 for good quality rockmass, the ratio of pillar thickness to span is 0.9. This concludes that a span of 25 m requires a thickness of 22.5 m (Table 6.4).

This approximates to the value determined by Carter's Crown pillar stability analysis. The limiting factor to this graph is the interpolation for the variable rockmass quality at pillar width/height less than 0.3.

Thus Very Good Quality rockmass is not consider for Al Masane with the use of Hoek and Brown's graph for pillar width/height less than 0.3 because of the accuracy in the database generating the graph and information gathered from core logging.

Figure 6.2 Hoek and Brown Pillar Dimension to Strength Estimate

Table C 4	I la ale and Duarray Englished Dillan Dimension Estimate Values
I anio h 4	HOOK and Brown Empirical Pillar Limonsion Estimate Values

Description	Min	Max
Q	80.00	100.00
RMR	83.44	85.45
σ _c	150.0 MPa	200.0 MPa
т	1.70	8.50
S	0.004	0.100
Estimated Pillar Strength	9.49 MPa	63.25 MPa
Pillar Strength/UCS	0.063	0.316
Pillar Span	3.0	25.0
Pillar Thickness	2.7	22.5
Thickness/Span	0.9	0.9

6.2 NUMERICAL ANALYSIS

6.2.1 CPILLAR ANALYSIS METHOD

Stability of surface crown pillar was analysed by CPillar. The pillar stability is assessed by methods: Rigid or Elastic and Voussoir. The analysis performed on Al Masane is Rigid since the failure modes and main assumptions for this analysis are:

- Any span to thickness ratio
- Low to medium or confining stress
- Simple "falling block" analysis

An overburden thickness of 3 m has been used for the model and the presence of groundwater is also modelled with water level estimated at 2.0 m above overburden (Figure 6.3). Results from the analysis (Table 6.5) indicated that pillar span to thickness of 25/25 yields a factor of safety (FOS) at 1.8 and 1.75 for permeable conditions.

Hoek recommended factor of safety in excess of 1.5 for pillars acting as permanent support.

Generally some caving of the unsupported crown pillar will occur during the life of mine and the depth of failure in the back (roof) is usually restricted to one half the excavation span.

Based on this theory, if the back were to cave to approximately 12 m or span/thickness ratio of 2.5, the FOS is at 1.7 and 1.68 (permeable condition).

Quen #hiels	P	Pillar Dimensi	ion	Estimated	Dormookility	Water	Rigid
Span/tnick	Span	Thickness	Length	Overburden	Permeability	Level (m)	Analysis (FOS)
0.30	3	10	200	3	No		12.39
0.50	3	10	200	3	Yes	2	11.58
2.50	25	10	200	3	No		1.65
2.50	25	10	200	3	Yes	2	1.54
2.00	25	12.5	200	3	No		1.70
2.00	25	12.5	200	3	Yes	2	1.68
1.67	25	15	200	3	No		1.73
1.07	25	15	200	3	Yes	2	1.65
1.25	25	20	200	3	No		1.77
1.25	25	20	200	3	Yes	2	1.71
1.00	25	25	200	3	No		1.80
1.00	25	25	200	3	Yes	2	1.75

Table 6.5 Al Masane CPillar Analysis Results

Figure 6.3 Stability Analysis of Crown Pillar

7.0 BACKFILL REQUIREMENTS

Backfill is required in order to mine the ore body with unsupported and supported mining methods. Unsupported mining methods such as Cut and fill will require classified mine tailings, waste or surface rock to be placed in the excavated sill before a consecutive lift can be mined. Consolidated fill is required for longhole stoping to maintain stability of the excavated stope and as dilution control during mining.

Strategically located rib and sill pillars have to be designed in the mine plan to with geotechnical and reserve parameters. A detail investigation is required to determine types of fill material for Al Masane.

8.0 OBSERVATION UNDERGROUND

The following are general observations made during the underground mine visit.

8.1 INTERSECTION REQUIRES CABLE BOLTING

Underground excavation requires cable bolts to provide additional support to wedge formation on the back. Wedge formations were observed at the ramp access to the north-south exploration drift and east-west to north-south exploration drift.

Intersections generate greater spans and expose the back to the wedge formation when the correct joint sets angle intercept. It is critical to design ground support for the dead weight of the wedge formed in terms of breaking load and bond strength associated with the embedded bolt length.

Figure 8.1 Wedge Failure Close to Pump Station

8.2 PORTAL

Approximately 15-20 m from the portal into the ramp requires fibre reinforced shotcrete if screens are not incorporated to the current bolting system. Screens can be attached to the current support with push plates.

Shotcrete provides additional support for loose material occurring in between the current spot bolting. The shotcrete improves the safety of the excavation during traffic transiting in the operation stage.

Proper scaling of loose and complete wash down of the area is essential to ensure good adhesion of the shotcrete.

8.3 PILLAR REQUIRES REINFORCEMENT

Time dependant pillar deterioration can be observed in the intersection pillar located between the ramp and north-south exploration. Increased pillar confinement by reinforcement followed by intersection cable bolting is essential to increase safety of the area before mining commences.

Figure 8.3 Pillar (Between Ramp and North-South Exploration Drift)

8.4 GROUND WATER

The source of water infiltration into underground excavation is observed from two sources:

- Unplugged or ungrouted diamond drill boreholes observed in the majority of boreholes
- Infiltration from surrounding openings and ramp-portal area.

The location of all surface, underground and future drill holes is recommend to be plugged with cement slurry to reduce direct filtration of ground water into underground excavation. This reduces the amount of pumping capacity and requirements during mining operations.

Open diamond drill holes can present hazards when blasting and also introduce water into back-filled areas within stopes, washing out backfill and introducing backfill and stope instability.

Groundwater sources must be identified, and de-watering or grouting programs via drilling can be accomplished to drain or seal off these aquifers and de-pressurize areas that may cause stability issues.

9.0 CONCLUSIONS AND RECOMMENDATIONS

9.1 ROCKMASS INTERPRETATION

Underground mapping indicated massive rockmass with one joint set to random. A total of 46 data points were gathered from the Saadah Zone and 13 data points were South Houra due to limited time on site to perform all the geotechnical work.

Both the drifts mapped can be observed to be relatively massive and mostly govern by foliation especially for Saadah Zone.

Wedge failures underground were observed due to the opening dimension and joint set orientation. This does not appear to occur on all the intersections observed underground. Spot bolting and cable bolting is recommended to increase safety in underground openings as mining progresses.

The rockmass logged for the six boreholes indicated that the rockmass in competent with rockmass classification ranging from Good to Extremely Good ground. The talc encountered in the core and from underground mapping is not subjected to shearing or deformation processes.

The talc altered rock is weaker than the surrounding rockmass and will induce additional dilution during mining adjacent to this unit. Al Masane's talc is a product of alteration through geological processes, rather than a tectonically derived event. The strength of talc at Al Masane will be confirmed when confirmation from Point Load Test result is being performed.

Additional on-site geotechnical data collection through underground mapping during the development stage and core logging is required to ensure that the rock types and geotechnical domains are addressed. This will provide more data points for statistical analysis yielding structurally control joint sets governing opening stabilities.

9.2 STOPE STABILITY ANALYSIS

Stope strike length of 30 m x 30 m high with hydraulic radius of 7.5 and narrow vein stope with of 15-20 m L x 100 m height at 8.3 hydraulic radius, indicate that the stope is stable under the rockmass condition estimated based on open stope non-man entry analysis.

The hanging wall is reported to be talcose and may require additional support.

Additional geotechnical investigation and ground support analysis is required for man-entry into narrow vein mining with Alimak.

The height of the stope is controlled by the contact regularity and hanging wall stability.

Thus at the current stage the stope dimension is suggested not to exceed the maximum dimension until detail geotechnical data is available to support the rockmass quality and economic analysis considering the dilution with contact irregularity.

9.3 CROWN PILLAR ANALYSIS

Based on the empirical and numerical analyses maximum crown pillar span of 25 m with a thickness of 25 m is stable with a factor of 1.80 (CPillar Analysis). Hoek and Brown recommended the permanent pillar to have a safety factor exceeding 1.5. The CPillar analysis was performed under dry and impermeable conditions and in both conditions, exceeding Hoek's recommendation for permanent pillar design.

The crown pillar thickness is recommended to have a gradual tapered in thickness with respect to the width of the ore body. The maximum width of the crown pillar for this analysis is 25 m with a thickness of 25 m, to a minimum width of 3 m x 10 m thick. The strike length of the Saadah ore body is estimated at 200 m for this analysis. To achieve gradual tapering thickness for the crown pillar, the stope height can be increase to the decrease in ore width.

The crown pillar span to thickness ratio is estimated to be greater than 1.0 because unravelling of the unsupported pillar is expected and generally restricted to one half the excavation span. For maximum span of 25 m, the thickness of the pillar is set at 25 m taking into consideration that the pillar will unravel at some extent. At span/thickness of 2.0 (span at 25 m and thickness of 12.5 m) the factor of safety is at 1.70 based on CPillar analysis for dry condition and 1.68 for permeable conditions. This exceeds recommendation suggested by Hoek for permanent pillar design.

Hydrogelogical investigation is recommended to provide details on the groundwater conditions and the effect on crown pillar, general mine stability and pumping requirement.

Constant surveying and monitoring of the crown pillar is recommended to understand the extent of possible pillar unravelling. This will assist in determining prevention measures for mine design and future recovery of the pillar.

9.4 GROUND CONTROL

A ground control program has to be implemented at the mine in the early stages to assist and address mine design and safety issues.

9.5 GROUND WATER

Location of all surface, underground and future drill holes is recommend to be plugged with cement slurry to reduce direct filtration of ground water into underground excavation. Observation of ground water filtration into the mine can be best observed during the flooding of the Wadi.

Additional hydrogeolgical investigation is required to determine the presence of groundwater other than the water derived from surface or Wadi. A program of grouting current and all future boreholes should be instituted to reduce the amount of water filtration, and to reduce safety risks from future blasting.

9.6 CLOSURE

The geotechnical logging of the six boreholes, performed during the site visit, is an initial attempt to evaluate the rockmass conditions. The information gathered is only sufficient to initiate preliminary geotechnical assessments of the crown pillar geometry and stope dimensioning indicated in the proposed scope of work.

Detailed geotechnical data collection is required to determine the ground conditions at depth for ground support and mine design, or for detailed engineering design purposes. The following data should be collected in order of priority:

- Initial site rock strength determination by Point Load Testing
- Detail geotechnical data collection from available, future core and mapping
- Uniaxial and triaxial testing data
- Oriented core measurements
- Regional stress testing.

This report summarizes the observations made during the initial geotechnical core logging and recommendations for crown pillar geometry and the future geotechnical management plan for the AI Masane Project.

APPENDIX A

WARDROP

				INICAL D																		
Date:	Apr 05 2005	Project No:	Al Masane - 8	869001.00	Mapper:	B.Foo	Line No.	Distance	Dip	*Strike	Feature Type	Continuity (m)	Spacing (m)	Infilling	Aperture	Shape	Roughness	Termination 1	Termination 2	Weather State	Strength	Water
			Mapping Type				1	0	90	92	JN	4		CL	VT	ST	RO	RC	FC	W1	R5-6	1
Bedrock:								4	77	70	JN	0.1-0.15	1.5	CL	VT	ST	RO	IR	FC	W1	R5-6	1
Description	- /m -		Curries Infes				1	4	30	70	JN	2.5	2	CL		SI	RO	AJ	IR	VV1	R5-6	1
ROD=115-3	3*.lv		Survey Into.					5	82	170	BD	4	3	CL	VT	ST/PI	RO	RC	FC	W1	R5-6	1
Comments:	Saadah Zone	9	1					5.5	88	140	BD	4	0.1-0.15	CL	VT	ST/PL	RO	RC	FC	W1	R5-6	1
								5.6	88	140	BD	5	0.1-0.16	CL	VT	ST/PL	RO	RC	FC	W2	R5-6	1
Declination :								5.7	88	140	BD	6	0.1-0.17	CL	VT	ST/PL	RO	RC	FC	W3	R5-6	1
LINE SURV	EY INFORMA	TION						5.8	88	140	BD	7	0.1-0.18	CL	VT	ST/PL	RO	RC	FC	W4	R5-6	1
Line No	Line Trend	Line Plunge	Initial East	Initial North	Initial Elev	Length Line		5.9	88	140	BD	8	0.1-0.19	CL	VT	ST/PL	RO	RC	FC	W5	R5-6	1
								61	88	140	BD BD	9	0.1-0.20		VI	ST/PL	RO	RC	FC	W/7	R5-6	1
								6.2	88	140	BD	10	0.1-0.21	CI	VT	ST/PL	RO	RC	FC	W8	R5-6	1
								6.3	88	140	BD	12	0.1-0.23	CL	VT	ST/PL	RO	RC	FC	W9	R5-6	1
Section\Pla	n							6.4	88	140	BD	13	0.1-0.24	CL	VT	ST/PL	RO	RC	FC	W10	R5-6	1
								6.5	88	140	BD	14	0.1-0.25	CL	VT	ST/PL	RO	RC	FC	W11	R5-6	1
								6.6	88	140	BD	15	0.1-0.26	CL	VT	ST/PL	RO	RC	FC	W12	R5-6	1
								6.7	88	140	BD	16	0.1-0.27	CL	VT	ST/PL	RO	RC	FC	W13	R5-6	1
								6.8	88	140	BD	1/	0.1-0.28	CL		ST/PL	RO	RC	FC	W14	R5-6	1
Mv ₁		1			GEND			6.9 7	88	140	BD	18	0.1-0.29		VI	ST/PL	RU PO	RC PC	FC	W15	R5-6	1
		4	Faint	Volcania Rocks	PARTS [UPI]	ne. Racky	-	7.1	88	140	BD	20	0.1-0.30	CL	VT	ST/PL	RO	RC	FC	W17	R5-6	1
100 m	Contraction during	0	- Ari	Person Turr and Crystal Turr	712 -	Basalt Dies		7.2	88	140	BD	21	0.1-0.32	CL	VT	ST/PL	RO	RC	FC	W18	R5-6	1
Ev.		and summer	Mi	Ranianan Palain Taff	Witters	Hantlan		7.3	88	140	BD	22	0.1-0.33	CL	VT	ST/PL	RO	RC	FC	W19	R5-6	1
	Constant Calif		14	Andred Paragettice Chart	1995 BR.	Wanning Ballides		7.4	88	140	BD	23	0.1-0.34	CL	VT	ST/PL	RO	RC	FC	W20	R5-6	1
ties and			Mafir	Volcanie Rocks				7.5	88	140	BD	24	0.1-0.35	CL	VT	ST/PL	RO	RC	FC	W21	R5-6	1
-Terrette	The second second	1		hometric Lave				7.6	88	140	BD	25	0.1-0.36	CL	VT	ST/PL	RO	RC	FC	W22	R5-6	1
Manni		-11-	Testim.	Biark Shale				7.0	88	140	BD	26	0.1-0.37	CL		ST/PL	RO	RC	FC	W23	R5-6	1
wiappi	ng Area			Randulana Inionita Resulta				7.0	00 88	140	BD BD	27	0.1-0.30		VT	ST/PL	RO	RC	FC	W24	R5-6	1
a new s				Charitite			-	8	88	140	BD	29	0.1-0.40	CL	VT	ST/PL	RO	RC	FC	W26	R5-6	1
est of		A		The second second				9	70	60	JN	4	0.5	CL	VT	ST	RO	RC	FC	W1	R5-6	1
~		\sim	~					9.2	78	91	JN	4	0.5	CL	VT	ST	RO	RC	FC	W1	R5-6	1
	VT			1	+			9.3	72	160	BD	4	5	СН	TI	PL	RO	RC	FC	W1	R5-6	1
		1 th		Fv2	++			10	70	194	BD	4	0.1-0.15	CL	VT	ST/PL	RO	RC	FC	W1	R5-6	1
ms		VIII	the	d	+/			10.5	30	90	JN	0.5	0.5-1	CL	VT	ST	RO	AJ	AJ	W1	R5-6	1
Sec. 1			Fve/c	h	+			11	70	180	SH	4	0.2-0.5	IL	V I /I I	UN	SL	RC	FC	VV1	R4	1
	FVer	ich -			PL	-		17			ME											3-4
- Aller	ms	11		2	T	Everch		20	80	350	BD	4	0.01	CL	VT	UN	RO	RC	FC	W1	R5-6	1
		TY/				+		23	80	380	JN	4	1	TL	IT	ST/UN	SM/RC	RC	FC	W1	R5-6	1
Fv1		>	1	a sa territori	ms	*		25	88	340	SH	4	0.8 Thic.	TL	IT	UN	SM	RC	FC	W2-3	R4	1
	1 Carry			Sec. 1				32	48	340	BD	4	0.2-0.5	TL	VT/IT	PL	SM/RC	RC	FC	W2-3	R4	3
				1			At Pt 60	35	38	60	JN	1-1.5	0.3	CL	VT	ST	RO	IR	IR	W2-3	R5-6	3
				-	_			35	38	60	JN	1-1.6	1.3			SI	RU PO	IR	IR IP	W2-3	R5-6	3
	-7							35	38	60	JN JN	1-1.7	2.3	CL	VI	ST	RO	IR	IR	vv∠-3 W2-3	R5-6	3
								35	38	60	JN	1-1.9	4.3	CL	VТ	ST	RO	IR	IR	W2-3	R5-6	3
								37	65	160	BD	4	2	CL	VT	ST	RO	RC	FC	W2	R5-6	1
-	10			A																		1-
FL: Fault Zone SH:Shear JN:Joint VN:Vein BD:Bedding CO:Contact FO:Foliation CJ:Conjugate	<pre></pre> Continuity and <1cm 1-2cm 2-5cm 5-10cm 10-15cm 15-50cm 50-100cm	Spacing 1-2m 2-5m 5-10m 10-20m 20-50m 50-100m >100m	Intiling CL:Clean GO:Gouge BR:Broken Rock SU:Sulphides CH:Chlorite QZ:Quartz CA:Calcite CH:Chlorite	Aperture VT:Very tight < TI:Tight .125r PO:Part Open OP:Open .5-2. MW:Mod Wide WD:>10mm VW:Very Wide	1mm nm .255 5mm 2.5-10mm 1-10cm	Shape PL=Planar UN=Undulating ST=Stepped CU=Curved Water 1:Dry 2:Dry, Stained 3:Damp	Koughness SL:Slickensii SM:Smooth RO:Rough VR: Very Ro 4:Drops 5:Contiuous	ded ugh Flow		Weatheri W0:Indus W1: Fres W2:Slight W3:Mod W4:Hight W5:Comp W6:Resid	ing trial Sta h tly weath weather y weather bletely W fual Soil	in hered ed ered /eathered	R0:Extrement R1:Very we R2: Weak - R3:Med - I R4:Strong - R5:V.Stron R6:Ext Stro	ely weak eak - Pe Peeled (nite no Breaks g - Req ong >250	c -Indente eled by p with poo t peel\fra with mo uires ma DMPa - C	ed by thui bocket knife cture with re than of ny hamm Chipped b	mbnail fe is difficul h hamme ne hamm ier blows y hamme	It r one blo ner blow to fractu er blow	ow ure	AJ:Anoi IR:Intac FC:Floo RC:Roo W0:Indu	her Joint t Rock r Censore t Censore istrial Sta	ed ed in
ME: Massive			TL:Talc EP:Epidote										Note: * Strike Not Corrected For Declination									

WARDROP

GEOTECHNICAL DATA MAPPING SHEET																						
Date:	Apr 05 2005	Project No:	Al Masane - 8	869001.00	Mapper:	B.Foo	Line No.	Distance	Dip	*Strike	Feature Type	. Continuity (m)	Spacing (m)	f Infilling	Aperture	Shape	Roughness	Termination 1	Termination 2	Weather State	Strength	. Water
Mapping Type:						1	20	88	170	BD	4	0.2-0.5	TL	VT	UN	SM-RC	RC	FC	W2	R3-4	1	
							Bands	or talc	with so	me sulp	oniae. Be	aaing is r	nostly r	nassive			DO.	F0	14/0	D2 4	-	
Description								25	70	160	BD BD	4	0.2-0.5				DM-RC	RC DO	FC	W2	R3-4	1
JV=INU 01 JITIS/TII: SURVEY INTO:								30	60	70	JN	3	0.4	1L			SM-RC	RC DO	FC	VV2	K3-4	
								30	60	50	JIN	3	0.4			PL	SIVI-RC	RC	FC	VVZ	R3-4	1
Johnments. Jouth Houra Zone								30	60	170		3	0.4		VI			RC PC	FC	W2	R3-4	1
Declination ·	Declination :							33	60	170	BD	4	•	TI	VT	PI	SM-RC	RC	FC	W2	R3-4	1
LINE SURVEY INFORMATION						Random	39	38	80	JN	3		CL	VT	ST	RO	A.I	A.I	W2	R4-5	1	
Line No	Line Trend	Line Plunge	Initial East	Initial North	Initial Elev	Lenath Line	Random	45	90	180	BD	4	0.2-0.5	CL	VT	ST	RO	RC	FC	W2	R5	1
		J						52	65	220	JN	8	2.5	QZ	VT	UN	RO	RC	FC	W2	R5	1
	1	1			İ			58	80	245	JN	6	3	QZ	VT	UN	RO	RC	FC	W2	R5	1
	1	1			1			58.5	70	190	JN	4		QZ	VT	UN	RO	RC	FC	W1	R5	1
								60	80	160	Contac	4	2	CL	VT	PL	RO	RC	FC	W1	R5	1
Section\Plan	n																					
																						_
			1																			
Mv1																						
																						<u> </u>
1										-												_
- 5	South F	loura 2	Zone	6 1																		
and the set																						
C. S. Land	Mapping Ar	ea																				
formation .			1			1412545																
sh I																						
1	Mv,	Contraction of the second	I		557	sh																
in ere	-		ms		Db	V-																
	ms			XA	FVI	1 20																
	1		1			Dt																
	ms		ms			1000																
F		00	ms																			
		A \$		Y																		
16			DC		ms																	
11		me				A																
11	LEGEND	1110	5.																			
Faisie Volcanie Rocks	int int	tusive Backs	FV4				<u> </u>			<u> </u>												⊢
The Republic Paratory	Duni turi 204	Dates to		N	IV ₂																	┢
Tay Lamitated Charl	n Mysline Drift 🛄	Property las	• 0 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Db																	\vdash
The Billion Patielle The Lapitit Tell	a Tull	analian builden	and the second second																-			-
Die Rodood Paragath	tit Chell	Annual Second				Mar																┢
Maffir Volcanie Rocks	of Aggenerate																					-
Annestin Lave	A REAL PROPERTY AND A REAL										-					1	-					1
Sedimentary Rocks											-					1	-					\vdash
Andreas										1						<u> </u>						\vdash
Charitie	60 () () () () () () () () () (1		1	1			1						
Tata	2.*									1												1
Type FL: Fault Zone SH:Shear JN:Joint VN:Vein BD:Bedding	Continuity and <1cm 1-2cm 2-5cm 5-10cm 10-15cm	Spacing 1-2m 2-5m 5-10m 10-20m 20-50m 50 100	Infilling CL:Clean GO:Gouge BR:Broken Rock SU:Sulphides CH:Chlorite	Aperture VT:Very tight < TI:Tight .125r PO:Part Open OP:Open .5-2. MW:Mod Wide	1mm mm 255 5mm a 2.5-10mm	Shape PL=Planar UN=Undulating ST=Stepped CU=Curved Water	Roughness SL:Slickenside SM:Smooth RO:Rough VR: Very Roug	:d gh		Weather W0:Indus W1: Fres W2:Sligh W3:Mod W4:High	ing strial Stai sh ttly weath weathere ly weather	n ered ered	Strength R0:Extrem R1:Very w R2: Weak R3:Med - R4:Strong	ely weak eak - Pe - Peeled Knife no - Breaks	c -Indente eled by p with poo t peel\tra with mo	ed by thu bocket kn ket knife cture wit re than c	Imbnail nife e is difficu h hamme one hamn	It er one blo ner blow) W	Termina AJ:Anot IR:Intact FC:Floo RC:Roo W0:Indu	ation/En her Join t Rock r Censor t Censor t Censor istrial Sta	t red ain
CO:Contact FO:Foliation CJ:Conjugate ME: Massive	15-50cm 50-100cm	50-100m >100m	QZ:Quartz CA:Calcite CH:Chlorite TL:Talc EP:Epidote	WD:>10mm VW:Very Wide	1-10cm	1:Dry 2:Dry, Stained 3:Damp	4:Drops 5:Contiuous Flow			W5:Com W6:Resi	pietely W dual Soil	eathered	R5:V.Strong - Requires man hanner blow to fracture R6:Ext Strong - Requires many hammer blows to fracture R6:Ext Strong >250MPa - Chipped by hammer blow						n	ENDS:0	, 1 or 2	

